
by
Scott Klement

IoT: Open My Garage Door with RPG

open GarageDoor;

close GarageDoor;

*inlr = *on;

Open My Garage

This is an actual, working, RPG program.

**free

dcl-f GARAGEDOOR disk(1)
 handler('DOOROA')
 usropn;

open GarageDoor;

close GarageDoor;

*inlr = *on;

My Homemade Opener
The box on the left contains two
things:
• Raspberry Pi (ZeroW)

• A relay

• Wires that connect to the
garage door switch

What?Two Raspberry Pi computers (with
my hand for comparison)
• Zero-W (approx. $10)
• 4B 4GB (approx. $60) The Raspberry Pi is a small, inexpensive,

energy efficient computer.
• Storage on microSD cards
• HDM� video/audio
• USB ports for keyboard/mouse
• Wired & Wifi Networking
• ARM-based CPU
• GP�O pins

Why Why Ras Pi?
Small, efficient, and inexpensive.
• Stick it under a table
• Back of a monitor
• �nside/above/under a cabinet
• �nside a vehicle
• …really, anywhere…

Use it to control electronics, and interface with a bigger
computer.
• Such as your PC
• Power Systems running �BM i

�ntroduction to Raspberry Pi
Scott will demonstrate (or show a video
that demonstrates) the basics of the
Raspberry Pi.

What Are GP�O Pins?
GP�O = General Purpose �nput/Output

They can be opened for:

• �nput -- check to see if there's voltage.

• Output -- Send voltage down the pin

Some terms:

• H�GH = means voltage is present

• LOW = means voltage is off

• Rising Edge = The point at which voltage turned on.

• Falling Edge = The point at which the voltage went off.

Note: The physical pin on the board does not typically
match the GP�O number. See diagram on right.

Back to the Garage!

Let's go back to the garage door example, and �'ll show you how it's coded!

Remember our goal: Make the RPG OPEN opcode open a garage door.

To open a garage door, we push a button…

What Does the Button Do?
The typical garage door button is very simple,

it's just a momentary switch. �t connects the

two wires while you are pressing it.

Think about when you open your garage door:

• You push the button

• Hold it for a second or so

• Then release it

Rising/Falling
Another way to say it:

• When you are holding the button, it is "high"

• When you are not, it is "low"

• When you first push it in, the electricity incrases

to high. That's the "rising edge"

• When you release it (no matter how long you

held it in) the electricity drops -- that's the "falling

edge"

• The garage door opener will activate on the

falling edge.

What is a Relay?

A relay is a switch that can be "flipped" electronically.
• Low volt power (from the Raspberry Pi) is connected on one side.
• Logic wire controls whether on or off.
• Opposite side is connected/disconnected via switch.
• Opposite side can be higher voltage (up to 250 v AC. Though, only 24 v

AC was needed for my garage door.)

5v DC power +

5v DC power -

Logic (3.3 v DC
obtained from
GPIO pin)

AC power
(up to 250v)

Creating the Falling Edge

We can therefore:

• Turn on a GP�O pin to signal the relay to connect the wires.
• Wait for a second or so

• Turn off the GP�O pin to signal the relay to turn off.

• This creates a "falling edge" -- so will activate the garage door
opener!

• As far as the opener knows, a person just pressed the button.

Python Code to Turn Pin On/Off
This is Python code that runs on the Raspberry Pi. Python

is a simple language to learn, so is a good place to start!

import time
import RPi.GPIO as GPIO

pin = 5
GPIO.setmode(GPIO.BCM)
GPIO.setup(pin, GPIO.OUT)

GPIO.output(pin, GPIO.HIGH)
time.sleep(1)
GPIO.output(pin, GPIO.LOW)

GPIO.cleanup()

Python w/Flask (1 of 3)

import time
import RPi.GPIO as GPIO
from flask import Flask, request

pin = 5
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
GPIO.setup(pin, GPIO.OUT)

app = Flask(__name__)

But, of course, we want to activate this from an RPG
program on an �BM i over a network. To do that, we can
use "Flask" (a simple HTTP server) to make it into a REST
AP� -- then call that AP� from RPG.

Python w/Flask (2 of 3)
@app.route('/openDoor/<password>')

def openDoor(password):
 if password == 'myPassword':

mode = request.args.get('mode')
 try:
 if mode == 'on':
 GPIO.output(pin, GPIO.HIGH)
 time.sleep(1)
 GPIO.output(pin, GPIO.LOW)
 else:
 GPIO.output(pin, GPIO.HIGH)
 time.sleep(1)
 GPIO.output(pin, GPIO.LOW)
 finally:
 return 'success';

http://192.168.0.1:5000/openDoor/myPassword?mode=on

Python w/Flask (3 of 3)
if __name__ == '__main__':

app.run(debug=False, host='0.0.0.0')

idle

GPIO.output(pin, GPIO.LOW)
GPIO.cleanup()

Open Access Handler (1 of 3)

**free
ctl-opt dftactgrp(*no) actgrp('KLEMENT')

option(*srcstmt:*nodebugio:*noshowcpy)
 bnddir('HTTPAPI');

/copy QOAR/QRPGLESRC,QRNOPENACC
/copy HTTPAPI_H

dcl-pi *n;
 io likeds(QrnOpenAccess_t);
end-pi;

io.rpgStatus = 0;

dcl-f GARAGEDOOR disk(1) handler('DOOROA') usropn;

Open Access Handler (2 of 3)
select;
when io.rpgOperation = QrnOperation_OPEN;
 makeRestCall('on': io.rpgStatus);

when io.rpgOperation = QrnOperation_CLOSE;
 makeRestCall('off': io.rpgStatus);

other;
 io.rpgStatus = 1299; // 1299 = Other I/O
error detected
endsl;

return;

Open Access Handler (3 of 3)
dcl-proc makeRestCall;

 dcl-pi *n;
mode varchar(3) const options(*trim);

 status int(10);
 end-pi;

 monitor;
 http_string('GET'

: 'http://scottraspi4b:5000/openDoor/+
myPassword?mode=' + mode);

 on-error;
 status = 1217; // status 1217 = File not found.
 endmon;

end-proc;

Show Me! Demonstration.
Will walk through the code so
you can see it running.

Physical Computing
Physical Computing lets you write programs that
interact with the physical world!

• Turn stuff on or off.
• Read sensors (temperature, pressure,

"eyes"/infrared, cameras)
• Make conveyors move.
• �nterface printers, scanners, scales, industrial

terminals…
• The possibilities are endless!
• Motors/Servos
• Ultrasonic sensors
• Solenoid valves

�nternet of Things (�oT)
When you do physical computing and make it
available to the �nternet (even if protected with
passwords, encryption, VPNs, etc) it's called �oT --
or "internet of things".

Basically, my garage door is the "thing", and �'ve
made it available to the �nternet.

Now � can open/close my door from an RPG
program, even though its running on an �BM i in
Ohio.

That's not all, by the way -- � also wrote an app
for my cell phone, and even routines for my
Amazon Echo (Alexa) so � can open/close the
door that way, too.

�magine…
� demonstrated turning LEDs, a light
on/off and opening/closing a garage
door.

Think of all of the other things you
could turn on or off!

And it's done by program logic, so
could be done under any logic you can
imagine.

Likewise, � demonstrated reading from
a door sensor switch.

Think of all of the other sensors and
devices you can read from.

Conveyor
There are cameras available that work well with
image detection software (such as OpenCV)

This project stops the conveyor belt when a nut
over a given size is detected at the end of the
conveyor. The worker could then remove the one
that's too large.

With servos you could build a robotic arm (or buy a
prebuilt one) that removes the nut. (Or any other
type of item.) -- not shown.

Sorting M&Ms
Sorts M&Ms by
color. Pretty cool,
to play with -- but
there are also
industrial uses for
it.

Two Main Languages on RaspPi

Python Node.js

Python Node.js
Easy to learn Extremely efficient for:

Extremely popular • Web applications

Lots of examples of IoT projects • REST APIs

Favored by electrical engineers • Waiting for electronics

Lots of open source plugins More complex to learn

Also very popular

Favored by software engineers

Even more open source plugins

Two Main Languages on Raspberry Pi

Diagram of the �ntro Project
Wrapping it up into a REST AP�

Quick Overview.

�ntro Project Used Node.js
�nterested in the code for the LED, Relay and Door
Switch project � showed earlier to introduce Node.js?

The entire code is on GitHub, if you want to see it.
https://github.com/ScottKlement/rpg-raspi-demo

But will give a basic introduction to how it worked:
• Used a Node.js module called "onoff"
• Has functions for read/writing GP�O both

synchronously and asynchronously.
• � will show you some quick examples

Node Writing GP�O
To turn one on, you simply write
1 to it. To turn it off, write 0.

var Gpio = require("onoff").Gpio;

var led = new Gpio(5, 'out');

// Turn on
led.writeSync(1);

// Turn off after 5 seconds
setTimeout(() => led.writeSync(0), 3000);

GP�O ToggleUsing "onoff" on Raspberry Pi, you can read
from pin (even if it is in 'out' mode)

This makes it easy to toggle.

var Gpio = require("onoff").Gpio;

var relay = new Gpio(4, 'out');

function toggle() {
 var currentValue = relay.readSync();
 relay.writeSync(currentValue ^ 1);
}

toggle();
setTimeout(toggle, 3000);

Ease of Async Operations
�magine you wanted to wait for a button to
be pressed on GP�O 23.
You don't want to sit in a loop, constantly
reading the pin -- this would use a lot of
CPU.
Plus, you wouldn't be able to handle REST
requests at the same time!

Async Button
onoff provides a watch event that can fire a function
when the state of a button changes. �t can be 'falling' (for
the falling edge), 'rising' (for the rising edge) or 'both'.

There's also a debounceTimeout to avoid the situation
where a button might open/close more than once rapidly.

var Gpio = require("onoff").Gpio;

var button = new Gpio(23, 'in', 'both',
 {debounceTimeout: 10});

button.watch((err, value) => {
 console.log((value===1) ? 'up':'down');
});

Questions?

For this presentation as well as the sample code,
visit my web site:

http://www.scottklement.com/presentations/

